
Linear Algebra & Geometry
LECTURE 3

Groups



Definition. An algebra (G,*) is called a group iff 

1. * is associative 
∀𝑝, 𝑞, 𝑟 ∈ 𝐺 𝑝 ∗ 𝑞 ∗ 𝑟 = 𝑝 ∗ 𝑞 ∗ 𝑟

2. G has an identity element
∃𝑒 ∈ 𝐺 ∀𝑝 ∈ 𝐺 𝑒 ∗ 𝑝 = 𝑝 ∗ 𝑒 = 𝑝

3. Every element of G is invertible 
∀𝑝 ∈ G ∃𝑞 ∈ 𝐺 𝑝 ∗ 𝑞 = 𝑞 ∗ 𝑝 = 𝑒

A group is called Abelian if 

4. * is commutative
∀𝑝, 𝑞 ∈ 𝐺 𝑝 ∗ 𝑞 = 𝑞 ∗ 𝑝

Remark. Due to axiom 2 no group is empty.



Fact.
There is only one identity element in a group.
For every element in a group there is only one inverse element.

Proof.
If e and d are identity elements then 𝑒 ∗ 𝑑 = 𝑑 because e is an 
identity, and 𝑒 ∗ 𝑑 = 𝑒 because d is an identity. There is only 
element 𝑒 ∗ 𝑑 (an algebraic operation is a function) so 𝑒 = 𝑑.

Comprehension test.
Prove the uniqueness of the inverse element.

Note.
We tend to denote the inverse element to p by 𝑝−1. Be warned –

this is a general symbol, nothing to do with 
1

𝑝
in "regular" 

arithmetic of numbers.



Examples. 

• (ℤ,+), (ℝ,+) are Abelian groups 

• Let 𝑋 = 2𝑘 + 1 𝑘 ∈ ℤ . (𝑋,+) is not a group for a number of 
reasons. First and most important (and also most likely to be 
overlooked) is that it is not an algebra at all, because the sum of 
two numbers from X does not belong to X.

• Let 𝑋 = 2𝑘 𝑘 ∈ ℤ . (𝑋,+) is an Abelian group. First, it is an 
algebra (it is"closed under addition") i.e. the sum of two even 
numbers is even. Associativity and commutativity or addition 
are obvious. 0 is the identity and −𝑎 is the inverse for a.

• (ℝ,⋅) is not a group because 0 is not invertible. (ℝ ∖ 0 ,⋅) is a 
group, though.

• (ℝ+,⋅) is a group, (ℝ+ = (0;∞) and ⋅ denotes multiplication in 
the usual sense). (ℝ−,⋅) is not a group because it is not closed 
under multiplication. 



• (2𝑋,÷) where 2𝑋 is the set of all subsets of X and 𝐴 ÷ 𝐵 =
𝐴 ∪ B ∖ (𝐴 ∩ 𝐵) is an Abelian group. 2𝑋 is obviously closed 

under symmetric difference. It is easy to verify that the identity 
element is ∅ and that for every subset A of X, 𝐴−1 = 𝐴.

Comprehension.
Prove that symmetric difference is associative.

Fact. 

• 𝐴 ÷ 𝐵 can be equivalently defined as 𝐴 ∖ 𝐵 ∪ (𝐵 ∖ 𝐴).

• 𝐴 ÷ 𝐵 can be described as the set of all those elements of X
who belong to exactly one of A and B.



Operations modulo n

Lemma. (Remainder lemma for integers).
For every 𝑘 ∈ ℤ and for every 𝑛 ∈ ℕ there exist unique q and r
such that 𝑘 = 𝑛𝑞 + 𝑟, 𝑞 ∈ ℤ and 0 ≤ 𝑟 ≤ 𝑛 − 1. 

The number r is called the remainder from the division of  k by n 
and is often denoted by 𝑘 𝑚𝑜𝑑 𝑛 (k modulo n). Obviously, for 
every integer p, 𝑘 𝑚𝑜𝑑 𝑛 = 𝑘 + 𝑝𝑛 𝑚𝑜𝑑 𝑛

Definition.
For every 𝑛 ∈ ℕ and for every 𝑝, 𝑞 ∈ ℤ
𝑝⊕ 𝑞 = 𝑝 + 𝑞 𝑚𝑜𝑑 𝑛 (addition modulo n )

𝑝⊗ 𝑞 = 𝑝𝑞 𝑚𝑜𝑑 𝑛 (multiplication modulo n).

Comment. The meaning of ⊕ and ⊗ depends on n. To avoid 
ambiguities we should use clumsy symbols like ⊕𝑛 and ⊗𝑛. 
Instead, we usually let the context determine the actual value of n. 



Theorem.
Multiplication and addition mod n are commutative and 
associative.

Lemma.
(1) 𝑎 𝑚𝑜𝑑 𝑛 𝑚𝑜𝑑 𝑛 = 𝑎 𝑚𝑜𝑑 𝑛 (obvious)
(2) 𝑎 + 𝑏 𝑚𝑜𝑑 𝑛 = [ 𝑎 𝑚𝑜𝑑 𝑛 + 𝑏 𝑚𝑜𝑑 𝑛 ]𝑚𝑜𝑑 𝑛
(3) 𝑎𝑏 𝑚𝑜𝑑 𝑛 = [ 𝑎 𝑚𝑜𝑑 𝑛 𝑏 𝑚𝑜𝑑 𝑛 ]𝑚𝑜𝑑 𝑛

The lemma and the theorem will be proved in tutorials.

Comprehension.

For which n is (ℤ,⊕𝑛) a group?



Definition.
ℤ𝑛 = {0,1,… , 𝑛 − 1}

Fact.
(ℤ𝑛,⊕) is an Abelian group.
Proof.
Addition mod n is an operation on the set ℤ𝑛 because the 
remainder from the division by n is always a number between 0 
and n-1 (never omit this part!).
Addition mod n is associative and commutative.
The identity element for ⊕ is clearly 0 and 0 belongs to ℤ𝒏.
What is the inverse for a 𝑘 ∈ ℤ𝑛? It must be p ∈ ℤ𝑛 such that 

𝑝⊕ 𝑘 = 0. Obviously, it cannot be (−𝑘) because it does not 
belong to ℤ𝑛. On the other hand, we don't want 𝑝 + 𝑘 = 0, we 
want 𝑝⊕ 𝑘 = 0. It means we want 𝑝 + 𝑘 divisible by n. This 
means a good choice for the inverse to k is n-k, except in the case 
k=0 where k is its own inverse. QED 



Examples – continued

• (ℤ6,⊗) is associative, commutative, 1 is the identity element. 
But it is not a group because 0 is not invertible: for every k, 
k ⊗0 = 0, never 1. We can try to save the case by removing 0 
from ℤ6, like we did in case of ℝ. Unfortunately, (ℤ6 ∖ {0},⊗) 
is not closed under multiplication, e.g. 2⊗3= 0 and 
0 ∉ ℤ6 ∖ {0}, obviously.

• Let BI(X) denote the set of all functions from X into X that are 
injective ("one-to-one") and surjective ("onto"). 
A function 𝑓: 𝑋 → 𝑌 is said to be injective iff 
(∀𝑝, 𝑞 ∈ 𝑋) (𝑝 ≠ 𝑞 ⇒ 𝑓 𝑝 ≠ 𝑓(𝑞)).
A function 𝑔: 𝑋 → 𝑌 is said to be surjective iff 

∀𝑦 ∈ Y ∃𝑥 ∈ 𝑋 𝑓 𝑥 = 𝑦
The composition of functions f and g is the function 𝑓 ∘ 𝑔 such 
that (∀𝑥 ∈ 𝑋) 𝑓 ∘ 𝑔 𝑥 = 𝑓(𝑔 𝑥 ).



Comprehension.

• Prove that composition is an operation on 𝐵𝐼(𝑋).

• Prove that composition is associative.

• Describe all cases when composition is commutative.

• Show that (𝐵𝐼 𝑋 ,∘) is a (usually non-Abelian) group.



Fact. (The cancellation law)

In every group 𝐺,∗

1. ∀𝑎, 𝑏, 𝑐 ∈ 𝐺 (𝑎 ∗ 𝑐 = 𝑏 ∗ 𝑐 ⇒ 𝑎 = 𝑏) (right cancellation 
law)

2. ∀𝑝, 𝑞, 𝑟 ∈ 𝐺 (𝑝 ∗ 𝑞 = 𝑝 ∗ 𝑟 ⇒ 𝑞 = 𝑟) (left cancellation law)

Proof.

Part 1. 𝑎 ∗ 𝑐 ∗ 𝑐−1 = 𝑏 ∗ 𝑐 ∗ 𝑐−1 because 𝑎 ∗ 𝑐 = 𝑏 ∗ 𝑐 and an 
algebraic operation is a function. Since ∗ is associative we get 𝑎 ∗
(𝑐 ∗ 𝑐−1) = 𝑏 ∗ (𝑐 ∗ 𝑐−1) which yields a=b.
Part 2. can be done in the same way.



Fact. 

In every group 𝐺,∗

1. ∀𝑎, 𝑏 ∈ 𝐺 𝑎 ∗ 𝑏 −1 = 𝑏−1 ∗ 𝑎−1

2. (∀𝑎 ∈ 𝐺) 𝑎−1 −1 = 𝑎

Proof.

Part 1. How does one verify that p is the inverse for q?  We check 
if  𝑝 ∗ 𝑞 = 𝑞 ∗ 𝑝 = 𝑒. Here we want to show that 𝑏−1 ∗ 𝑎−1 is the 
inverse for 𝑎 ∗ 𝑏. Let us put 𝑝 = 𝑏−1 ∗ 𝑎−1 and 𝑞 = 𝑎 ∗ 𝑏. We get 
(𝑏−1∗ 𝑎−1) ∗ (𝑎 ∗ 𝑏) = ( 𝑏−1 ∗ 𝑎−1 ∗ 𝑎) ∗ 𝑏 =
(𝑏−1 ∗ (𝑎−1 ∗ 𝑎)) ∗ 𝑏 = (𝑏−1 ∗ 𝑒) ∗ 𝑏 = 𝑏−1 ∗ 𝑏 = 𝑒. The other 
equality, 𝑎 ∗ 𝑏 ∗ (𝑏−1 ∗ 𝑎−1) = 𝑒, can be done the same way.

Part 2. We use the same idea. How do we check that the inverse 
for 𝑎−1 is 𝑎? We just check if 𝑎−1 ∗ 𝑎 = 𝑒 but this is obvious so, 
in a sense, there is nothing to prove.



Definition.
A group (𝐻, #) is said to be a subgroup of a group 𝐺,∗ iff
𝐻 ⊆ 𝐺 and ∀𝑎, 𝑏 ∈ 𝐻 𝑎 # 𝑏 = 𝑎 ∗ 𝑏.

We usually say that H is a subgroup of G with respect to the same 
operation and we write (𝐻,∗). It would be better to say that the 
operation on H is the one we use in G only restricted to 𝐻 × 𝐻. 
But then we would have to write (𝐻,∗ ȁ𝐻×𝐻)which looks untidy.

Fact.
If H is a subgroup of G then the identity element in H is the same as the 
identity of G and the inverse of an element a in H is the same as the 
inverse of a in G.

Proof. Suppose 𝑒𝐻 is the identity of H which means that 𝑒𝐻 ∗ 𝑒𝐻 = 𝑒𝐻. 
Since 𝐻 ⊆ 𝐺, 𝑒𝐻 is an element of G and is therefore invertible in G. 
Hence, there exists 𝑞 ∈ 𝐺 such that 𝑒𝐻 ∗ 𝑞 = 𝑒. From 𝑒𝐻 ∗ 𝑒𝐻 = 𝑒𝐻 we 
get 𝑒𝐻 ∗ 𝑒𝐻 ∗ 𝑞 = 𝑒𝐻 ∗ 𝑞, which yields 𝑒𝐻 ∗ 𝑒 = 𝑒 and, finally, 𝑒𝐻 =
𝑒. In a similar way we can show that 𝑝−1 𝐻 = 𝑝−1 𝐺. QED



Examples.

1. 2ℤ = {2𝑛: 𝑛 ∈ ℤ} (the set of all even integers) is a subgroup of 
ℤ (with resp. to regular addition).

2. The set of odd integers is not a subgroup of ℤ.

3. ℚ 2 = {𝑎 + 𝑏 2: 𝑎, 𝑏 ∈ ℚ}. (ℚ,+) is a subgroup of 

(ℚ 2 ,+), which in turn is a subgroup of (ℝ,+).

4. (ℚ 2 ∖ {0},⋅) is a subgroup of ℝ ∖ 0 ,⋅ .
The only nontrivial questions here are: 

(a) is ℚ 2 ∖ {0} closed under addition and

(b) does the inverse of every number from ℚ 2 ∖ {0} belong 

to ℚ 2 ∖ {0}.

Proof. (a): 𝑎 + 𝑏 2 𝑐 + 𝑑 2 = 𝑎𝑐 + 2𝑏𝑑 + (

)
𝑎𝑑 +

𝑏𝑐 2 which does belong to ℚ 2 but does it belong to 

ℚ 2 ∖ {0}? Yes, because the product of two non-zero real 

numbers is a nonzero real number.



(b): 𝑎 + 𝑏 2
−1

=
1

𝑎+𝑏 2
=

𝑎−𝑏 2

(𝑎+𝑏 2)(𝑎−𝑏 2)
=

𝑎−𝑏 2

(𝑎2−2𝑏2)
∈ ℚ 2

and, since the inverse to a real number is always non-zero, we can 

claim that 𝑎 + 𝑏 2
−1

∈ ℚ 2 ∖ {0}.

Note. You have probably noticed that the way we define ℚ 2
over ℚ mimics the way we defined complex numbers over reals. 
We could say ℂ = ℝ(𝑖).

Comprehension.

1. Is ℤ6,⊕ a subgroup of (ℤ,+)?

2. Consider (𝐵𝐼(ℝ × ℝ),∘) – the group of all bijections of the 
plane onto itself. Is the set of all bijections that preserve the 
distance between points a subgroup? (f preserves the distance
iff ∀𝑃, 𝑄 ∈ ℝ2 𝑑𝑖𝑠𝑡 𝑃, 𝑄 = 𝑑𝑖𝑠𝑡(𝑓 𝑃 , 𝑓 𝑄 ) ).


