Linear Algebra & Geometry LECTURE 3 Groups

Definition. An algebra (G,*) is called a *group* iff

 * is associative (∀p,q,r ∈ G) p * (q * r) = (p * q) * r
 G has an identity element

 $(\exists e \in G)(\forall p \in G) \ e * p = p * e = p$

3. Every element of G is invertible $(\forall p \in G)(\exists q \in G)p * q = q * p = e$

A group is called Abelian if

4. * is commutative $(\forall p, q \in G)p * q = q * p$

Remark. Due to axiom 2 no group is empty.

Fact.

There is only one identity element in a group.

For every element in a group there is only one inverse element.

Proof.

If *e* and *d* are identity elements then e * d = d because *e* is an identity, and e * d = e because *d* is an identity. There is only element e * d (an algebraic operation is a function) so e = d.

Comprehension test.

Prove the uniqueness of the inverse element.

Note.

We tend to denote the inverse element to p by p^{-1} . Be warned – this is a general symbol, nothing to do with $\frac{1}{p}$ in "regular" arithmetic of numbers.

Examples.

- $(\mathbb{Z},+), (\mathbb{R},+)$ are Abelian groups
- Let X = {2k + 1|k ∈ Z}. (X, +) is not a group for a number of reasons. First and most important (and also most likely to be overlooked) is that it is not an algebra at all, because the sum of two numbers from X does not belong to X.
- Let $X = \{2k | k \in \mathbb{Z}\}$. (X, +) is an Abelian group. First, it is an algebra (it is "*closed under addition*") i.e. the sum of two even numbers is even. Associativity and commutativity or addition are obvious. 0 is the identity and -a is the inverse for a.
- (ℝ,·) is not a group because 0 is not invertible. (ℝ \ {0},·) is a group, though.
- (ℝ⁺,·) is a group, (ℝ⁺ = (0;∞) and · denotes multiplication in the usual sense). (ℝ⁻,·) is not a group because it is not *closed under multiplication*.

• $(2^X, \div)$ where 2^X is the set of all subsets of X and $A \div B = (A \cup B) \setminus (A \cap B)$ is an Abelian group. 2^X is obviously *closed under symmetric difference*. It is easy to verify that the identity element is \emptyset and that for every subset A of X, $A^{-1} = A$.

Comprehension.

Prove that symmetric difference is associative.

Fact.

- $A \div B$ can be equivalently defined as $(A \setminus B) \cup (B \setminus A)$.
- $A \div B$ can be described as the set of all those elements of *X* who belong to exactly one of A and B.

Operations modulo *n*

Lemma. (Remainder lemma for integers). For every $k \in \mathbb{Z}$ and for every $n \in \mathbb{N}$ there exist unique q and r such that k = nq + r, $q \in \mathbb{Z}$ and $0 \le r \le n - 1$.

The number *r* is called the *remainder from the division of k by n* and is often denoted by $k \mod n$ ($k \mod n$). Obviously, for every integer *p*, $k \mod n = (k + pn) \mod n$

Definition.

For every $n \in \mathbb{N}$ and for every $p, q \in \mathbb{Z}$ $p \bigoplus q = (p+q)mod n \quad (addition \ modulo \ n)$ $p \otimes q = (pq)mod \ n \quad (multiplication \ modulo \ n).$

Comment. The meaning of \oplus and \otimes depends on *n*. To avoid ambiguities we should use clumsy symbols like \oplus_n and \otimes_n . Instead, we usually let the context determine the actual value of *n*.

Theorem.

Multiplication and addition mod n are commutative and associative.

Lemma.

(1) (a mod n)mod n = a mod n (obvious)
(2) (a + b)mod n = [(a mod n) + (b mod n)]mod n
(3) (ab mod n) = [(a mod n)(b mod n)]mod n

The lemma and the theorem will be proved in tutorials.

Comprehension.

For which *n* is $(\mathbb{Z}, \bigoplus_n)$ a group?

Definition.

 $\mathbb{Z}_n = \{0, 1, \dots, n-1\}$

Fact.

```
(\mathbb{Z}_n, \bigoplus) is an Abelian group. Proof.
```

Addition mod n is an operation on the set \mathbb{Z}_n because the remainder from the division by *n* is always a number between 0 and *n*-1 (never omit this part!).

Addition mod n is associative and commutative.

The identity element for \bigoplus is clearly 0 and **0 belongs to** \mathbb{Z}_n . What is the inverse for a $k \in \mathbb{Z}_n$? It must be $p \in \mathbb{Z}_n$ such that

 $p \oplus k = 0$. Obviously, it cannot be (-k) because it does not belong to \mathbb{Z}_n . On the other hand, we don't want p + k = 0, we want $p \oplus k = 0$. It means we want p + k divisible by n. This means a good choice for the inverse to k is n-k, except in the case k=0 where k is its own inverse. QED

Examples – continued

- (Z₆, ⊗) is associative, commutative, 1 is the identity element. But it is not a group because 0 is not invertible: for every k, k ⊗ 0 = 0, never 1. We can try to save the case by removing 0 from Z₆, like we did in case of ℝ. Unfortunately, (Z₆ \ {0}, ⊗) is not closed under multiplication, e.g. 2⊗3= 0 and 0 ∉ Z₆ \ {0}, obviously.
- Let BI(X) denote the set of all functions from X into X that are injective ("one-to-one") and surjective ("onto"). A function f: X → Y is said to be injective iff (∀p, q ∈ X) (p ≠ q ⇒ f(p) ≠ f(q)). A function g: X → Y is said to be surjective iff (∀y ∈ Y)(∃x ∈ X)f(x) = y The composition of functions f and g is the function f ∘ g such that (∀x ∈ X)(f ∘ g)(x) = f(g(x)).

Comprehension.

- Prove that composition is an operation on BI(X).
- Prove that composition is associative.
- Describe all cases when composition is commutative.
- Show that $(BI(X), \circ)$ is a (usually non-Abelian) group.

Fact. (The cancellation law)

In every group (*G*,*)

- 1. $(\forall a, b, c \in G)(a * c = b * c \Rightarrow a = b)$ (right cancellation law)
- *2.* $(\forall p, q, r \in G)(p * q = p * r \Rightarrow q = r)$ (*left cancellation law*) **Proof.**

Part 1. $(a * c) * c^{-1} = (b * c) * c^{-1}$ because a * c = b * c and an algebraic operation is a function. Since * is associative we get $a * (c * c^{-1}) = b * (c * c^{-1})$ which yields a=b. Part 2. can be done in the same way.

Fact.

In every group (*G*,*)

- 1. $(\forall a, b \in G)(a * b)^{-1} = b^{-1} * a^{-1}$
- 2. $(\forall a \in G)(a^{-1})^{-1} = a$

Proof.

Part 1. How does one verify that *p* is the inverse for *q*? We check if p * q = q * p = e. Here we want to show that $b^{-1} * a^{-1}$ is the inverse for a * b. Let us put $p = b^{-1} * a^{-1}$ and q = a * b. We get $(b^{-1} * a^{-1}) * (a * b) = ((b^{-1} * a^{-1}) * a) * b =$ $(b^{-1} * (a^{-1} * a)) * b = (b^{-1} * e) * b = b^{-1} * b = e$. The other equality, $(a * b) * (b^{-1} * a^{-1}) = e$, can be done the same way. Part 2. We use the same idea. How do we check that the inverse for a^{-1} is *a*? We just check if $a^{-1} * a = e$ but this is obvious so,

in a sense, there is nothing to prove.

Definition.

A group (H, #) is said to be a *subgroup* of a group (G, *) iff $H \subseteq G$ and $(\forall a, b \in H)a \# b = a * b$.

We usually say that H is a subgroup of G with respect to the same operation and we write (H,*). It would be better to say that the operation on H is the one we use in G only *restricted* to $H \times H$. But then we would have to write $(H,*|_{H\times H})$ which looks untidy.

Fact.

If H is a subgroup of G then the identity element in H is the same as the identity of G and the inverse of an element a in H is the same as the inverse of a in G.

Proof. Suppose e_H is the identity of H which means that $e_H * e_H = e_H$. Since $H \subseteq G$, e_H is an element of G and is therefore invertible in G. Hence, there exists $q \in G$ such that $e_H * q = e$. From $e_H * e_H = e_H$ we get $(e_H * e_H) * q = e_H * q$, which yields $e_H * e = e$ and, finally, $e_H = e$. In a similar way we can show that $(p^{-1})_H = (p^{-1})_G$. QED

Examples.

- 1. $2\mathbb{Z} = \{2n: n \in \mathbb{Z}\}$ (the set of all even integers) is a subgroup of \mathbb{Z} (with resp. to regular addition).
- 2. The set of odd integers is not a subgroup of \mathbb{Z} .
- 3. $\mathbb{Q}(\sqrt{2}) = \{a + b\sqrt{2} : a, b \in \mathbb{Q}\}$. $(\mathbb{Q}, +)$ is a subgroup of $(\mathbb{Q}(\sqrt{2}), +)$, which in turn is a subgroup of $(\mathbb{R}, +)$.
- 4. (Q(√2) \ {0},·) is a subgroup of (R \ {0},·). The only nontrivial questions here are:
 (a) is Q(√2) \ {0} *closed under addition* and
 (b) does the inverse of every number from Q(√2) \ {0} belong to Q(√2) \ {0}.
 Proof. (a): (a + b√2)(c + d√2) = (ac + 2bd) + (ad + bc)√2 which does belong to Q(√2) but does it belong to Q(√2) \ {0}? Yes, because the product of two non-zero real numbers is a nonzero real number.

(b):
$$(a + b\sqrt{2})^{-1} = \frac{1}{a+b\sqrt{2}} = \frac{a-b\sqrt{2}}{(a+b\sqrt{2})(a-b\sqrt{2})} = \frac{a-b\sqrt{2}}{(a^2-2b^2)} \in \mathbb{Q}(\sqrt{2})$$

and, since the inverse to a real number is always non-zero, we can claim that $(a + b\sqrt{2})^{-1} \in \mathbb{Q}(\sqrt{2}) \setminus \{0\}.$

Note. You have probably noticed that the way we define $\mathbb{Q}(\sqrt{2})$ over \mathbb{Q} mimics the way we defined complex numbers over reals. We could say $\mathbb{C} = \mathbb{R}(i)$.

Comprehension.

- 1. Is $(\mathbb{Z}_6, \bigoplus)$ a subgroup of $(\mathbb{Z}, +)$?
- 2. Consider $(BI(\mathbb{R} \times \mathbb{R}), \circ)$ the group of all bijections of the plane onto itself. Is the set of all bijections that preserve the distance between points a subgroup? (f *preserves the distance* iff $(\forall P, Q \in \mathbb{R}^2)dist(P, Q) = dist(f(P), f(Q))$).