Linear Algebra & Geometry

LECTURE 3
Groups



Definition. An algebra (G,*) is called a group iff

1. *Isassociative
(Vp,qr€G)p*(g*r) =(*q)*r
2. G has an identity element
(leeG)(VpEG)exp=p*xe=p
3. Every element of G is invertible
(VpeG)Pqeb)pxq=q*p=ce

A group is called Abelian if
4. *1s commutative

(Vp,q€EG)p*xq=qx*p

Remark. Due to axiom 2 no group Is empty.



Fact.
There is only one identity element in a group.
For every element in a group there is only one inverse element.

Proof.

If e and d are identity elements then e * d = d because e Is an
Identity, and e * d = e because d Is an identity. There is only

element e * d (an algebraic operation is a function) so e = d.

Comprehension test.
Prove the uniqueness of the inverse element.

Note.
We tend to denote the inverse element to p by p~1. Be warned —

this is a general symbol, nothing to do with % In "regular"
arithmetic of numbers.



Examples.

(Z,+), (R,+) are Abelian groups

Let X = {2k + 1|k € Z}. (X, +) is not a group for a number of
reasons. First and most important (and also most likely to be
overlooked) is that it is not an algebra at all, because the sum of
two numbers from X does not belong to X.

Let X = {2k|k € Z}. (X, +) is an Abelian group. First, it is an
algebra (it i1s"closed under addition") i.e. the sum of two even
numbers Is even. Associativity and commutativity or addition
are obvious. 0 Is the identity and —a Is the Inverse for a.

(IR,-) is not a group because 0 is not invertible. (R \ {0},-) isa
group, though.

(R*,-) is a group, (R* = (0; o) and - denotes multiplication in
the usual sense). (R7,-) is not a group because it is not closed
under multiplication.



e (2%,+) where 2% is the set of all subsets of X and A =~ B =
(AU B) \ (4 n B) is an Abelian group. 2% is obviously closed
under symmetric difference. It is easy to verify that the identity
element is @ and that for every subset A of X, A~1 = A.

Comprehension.
Prove that symmetric difference is associative.

Fact.
« A+ B can be equivalently definedas (A\ B) U (B \ 4).

« A —+ B can be described as the set of all those elements of X
who belong to exactly one of A and B.



Operations modulo n

Lemma. (Remainder lemma for integers).
For every k € Z and for every n € N there exist unique g and r
suchthatk =ng+r,geZand0<r <n-—1.

The number r Is called the remainder from the division of k by n
and Is often denoted by k mod n (k modulo n). Obviously, for
every integer p, k mod n = (k + pn)mod n

Definition.
For every n € N and for every p,q € Z
p®q=(p+q)modn (addition modulon)

p Q q = (pqg)mod n (multiplication modulo n).

Comment. The meaning of @ and & depends on n. To avoid
ambiguities we should use clumsy symbols like @,, and Q.
Instead, we usually let the context determine the actual value of n.



Theorem.
Multiplication and addition mod n are commutative and
associative.

Lemma.

(1) (a mod n)mod n = a mod n (obvious)

(2) (a + b)mod n = [(a mod n) + (b mod n)Jmod n
(3) (ab mod n) = [(a mod n)(b mod n)|mod n

The lemma and the theorem will be proved in tutorials.
Comprehension.
For which n is (Z,8,,) a group?



Definition.
Z, ={0,1,..,n—1}

Fact.

(Z,,D) is an Abelian group.

Proof.

Addition mod n is an operation on the set Z,, because the
remainder from the division by n is always a number between 0
and n-1 (never omit this part!).

Addition mod n Is associative and commutative.

The identity element for & is clearly 0 and 0 belongs to Z,,.
What is the inverse for a k € Z,,? It must be p € Z,, such that

p @ k = 0. Obviously, it cannot be (—k) because it does not
belong to Z,,. On the other hand, we don't want p + k = 0, we
want p @ k = 0. It means we want p + k divisible by n. This
means a good choice for the inverse to k is n-k, except in the case
k=0 where k Is its own inverse. QED



Examples — continued

* (Z4,Q) 1s associative, commutative, 1 iIs the identity element.
But it is not a group because 0 is not invertible: for every K,
k& 0 = 0, never 1. We can try to save the case by removing 0
from Z¢, like we did in case of R. Unfortunately, (Z¢ \ {0},&)
IS not closed under multiplication, e.g. 2 3= 0 and
0 € Z¢ \ {0}, obviously.

« Let BI(X) denote the set of all functions from X into X that are
Injective ("one-to-one™) and surjective ("onto").
A function f: X — Y Is said to be injective iff
Vp.aeX)(p+q=f(p) #f(q)
A function g: X — Y Is said to be surjective iff
(WY EVEXENf) =y
The composition of functions f and g is the function f o g such

that (Vx € X)(f o g)(x) = f(g(x)).



Comprehension.

* Prove that composition is an operation on BI(X).

* Prove that composition Is associative.

 Describe all cases when composition Is commutative.
« Show that (BI(X),°) is a (usually non-Abelian) group.



Fact. (The cancellation law)
In every group (G,*)

1. (WVa,b,c € G)(a*c=Dbx*c= a=Db) (right cancellation
law)

2. (Vp,q,r€G)(p*q=p=r=q=r)(left cancellation law)
Proof.

Part1l. (a*c)*c 1 = (b=*c)*c !because a x c = b * c and an
algebraic operation is a function. Since = is associative we get a *
(c *c™1) = b * (c * ¢c~1) which yields a=b.

Part 2. can be done in the same way.



Fact.

In every group (G,*)

1. Wa,beG)(axb)t=b"1xqg™?

2 (WVaeG)(aH)tl=a

Proof.

Part 1. How does one verify that p is the inverse for g? We check
if p*qg =q+*p = e.Herewe wantto show that b~ * a~1 is the
inverse for a x b. Letusputp = b~ ! a1 and g = a * b. We get
(b_l* a_l) *(a*b) = ((b‘l * a_l) *@)*b =
(b~tx(atxa))*b=(b"t+xe)xb=b"1%b =e.Theother
equality, (a * b) * (b~1 * a~1) = e, can be done the same way.
Part 2. We use the same idea. How do we check that the inverse

for a=1 is a? We just check if a=! * a = e but this is obvious so,
In a sense, there Is nothing to prove.



Definition.
A group (H, #) is said to be a subgroup of a group (G,*) iff
H< Gand (Va,b e H)a#b =ax*b.

We usually say that H is a subgroup of G with respect to the same
operation and we write (H,*). It would be better to say that the
operation on H is the one we use in G only restricted to H X H.
But then we would have to write (H,* | yxz) which looks untidy.

Fact.

If H is a subgroup of G then the identity element in H is the same as the
Identity of G and the inverse of an element a in H is the same as the
Inverse of ain G.

Proof. Suppose ey is the identity of H which means that e;; * ey = ey.
Since H € G, ey 1san element of G and is therefore invertible in G.
Hence, there exists g € G suchthatey * g = e. From ey * ey = ey We
get (ey * ey) * q = ey * g, whichyields ey * e = e and, finally, e, =
e. In a similar way we can show that (p™1) = (p™ ). QED



Examples.
1. 27 = {2n:n € 7} (the set of all even integers) is a subgroup of

2.

Z. (with resp. to regular addition).
The set of odd integers is not a subgroup of Z.

3. Q(v2) = {a+bV2:a,b € Q}. (Q +) is a subgroup of

(Q(v2), +), which in turn is a subgroup of (R, +).
(Q(V2) \ {0},") is a subgroup of (R \ {0},").

The only nontrivial questions here are:

(a) is Q(v2) \ {0} closed under addition and

(b) does the inverse of every number from Q(+/2) \ {0} belong
to Q(v2) \ {0}.

Proof. (a): (a + b\/i)(c + d\/i) = (ac + 2bd) + (ad +
bc)V'2 which does belong to Q(v/2) but does it belong to

Q(V2) \ {0}? Yes, because the product of two non-zero real
numbers IS a nonzero real number.



a—b+\/2 __ a-bV2
(b); (a t b\/_) a+b\/_ (a+by/2)(a—bV/2) ~ (a2-2b2) < Q(ﬁ)

and, since the inverse to a real number is always non-zero, we can

claim that (a + bvZ) € Q(VZ) \ {0}

Note. You have probably noticed that the way we define Q(+/2)

over Q mimics the way we defined complex numbers over reals.
We could say C = R(i).

Comprehension.
1. Is (Z¢, @) a subgroup of (Z,+)?

2. Consider (BI(R x R),o) — the group of all bijections of the
plane onto itself. Is the set of all bijections that preserve the
distance between points a subgroup? (f preserves the distance

iff (VP,Q € R?)dist(P,Q) = dist(f(P), f(Q))).



